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LETTER TO THE EDITOR 

Scaling and crossover in the one-dimensional true 
self-avoiding walk 

S L A de Queirozt, A L Stella$ and R B Stinchcombe 
Department of Theoretical Physics, 1 Keble Road, Oxford O X 1  3NP, UK 

Received 31 October 1983 

Abstract. We apply scaling and crossover arguments to the one-dimensional true self- 
avoiding walk, which avoids itself with strength g. The problem is formulated in terms of 
a grand canonical ensemble; a real-space renormalisation-group analysis shows that for 
large repulsion, x = eFg is a relevant variable causing crossover from the self-repelling 
chain (SRC) limit, with crossover exponent I$ = 1. A physical interpretation of this result 
is given in terms of competition between the correlation length and the average distance 
before the walk turns back on itself. The resulting flow suggests the existence of an 
intermediate attractive fixed point which makes the exponent v different from SRC and 
random-walk values for all x between 0 and 1, in agreement with recent Montecar lo  results. 

The term ‘self-avoiding random walk’ (SAW) has long since been used to refer to the 
statistical problem of a traveller who steps at random, with the constraint that he is 
not allowed to visit any given place more than once. This is a suitable model to describe 
the configurational properties of polymeric chains in good solvents (see e.g. de Gennes 
1979 and references therein). Recently, however, Amit et a1 (1983) have introduced 
the problem of the traveller who steps at random but tries to avoid places he has 
already visited, and called this the ‘true self-avoiding walk’ (TSAW); they argue that 
the model for polymers, described above, which they prefer to call the ‘self-repelling 
chain’ (SRC) ,  should be quite different from the TSAW, and indeed find that the upper 
critical dimensionality is two for the TSAW, whereas it is four for the SRC (de Gennes 
1979). They also studied the logarithmic corrections to scaling at d = 2, while Obukhov 
and Peliti (1983) improved the discussion of such corrections. Pietronero (1983) 
introduced a self-consistent approach to the TSAW from which he obtained d, = 2 as 
well as an explicit approximate expression for the ‘correlation length’ exponent v for 
d 6 2, namely 

v = 2/ (  d + 2), d s 2 .  (1) 

Though at present it is still not clear what kind of physical phenomenon the TSAW 

could model (diffusion in a medium with cumulative memory effects being perhaps a 
likely candidate), it displays some rather unique features which make it deserve further 
attention from the viewpoint of lattice statistics in its own right, as we shall see. 
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Even in one dimension ( d  = l ) ,  the TSAW is interesting and far from trivial. There, 
Pietronero’s expression gives v = 3, which is different from both the SRC exponent 
( v  = 1) and the random walk exponent ( v  = f). Indeed, Monte Carlo simulations give 
v =0.67*0.01 in this case (Bernasconi and Pietronero 1983). 

In this letter we use scaling and crossover arguments to discuss the TSAW for d = 1.  
The special features are more evident near the SRC limit, and this regime is given 
particular attention. 

The problem is defined in the following way (Amit et a1 1983): on a lattice, the 
traveller has to move to one of the z nearest neighbours of the site he is at. The 
probabirity Pi of moving to a site i depends on the number of times ni this site has 
already been visited: 

The parameter g defines the strength with which the walk avoids itself; the differences 
between the statistics of this problem and that of the SRC are discussed in Amit ef al 
(1983) and Pietronero (1983). In particular, the ordinary random walk (RW) is 
recovered if g = 0, for any space dimensionality; however, it is only in one dimension 
that the problem becomes the same as the SRC as g + a (which we then call the SRC 
Iimit). For space dimensionalities greater than one, ‘self-trapped’ configurations which 
are dead ends for SRCS (and hence are not taken into account e.g. in Monte Carlo 
configuration-generating programmes (Rosenbluth and Rosenbluth 1955)) have a way 
out in the TSAW case even if g = CO, because of normalisation condition (2) above. 
Accordingly, the discussion of the g -$a limit in two dimensions has concentrated on 
what the corrections to mean-field behaviour must be, rather than on whether or not 
there should be a crossover to a SRC regime (Obukhov and Peliti 1983). 

Two crossovers must then be expected to exist for a one-dimensional TSAW, as the 
repulsion parameter is varied from zero to infinity: one from zero to non-zero g (RW + 

TSAW) and the other as g + CO (TSAW-, SRC). As for the first case, the relevance (the 
word being taken here in a renormalisation-group sense) of excluded-volume forces 
is a feature well known to be displayed by models for the &transition of polymers in 
poor solvents (de Gennes 1975, 1979), as well as by a model recently introduced by 
Stanley et a1 (1983), which is not equivalent to the TSAW, although similar to it. The 
relevance of anisotropy in random (Derrida and Pomeau 1982) or pure (Napiorkdwski 
1983) diffusion problems should also be pointed out, for these are further examples 
of instability of the pure RW relative to perturbations. Thus, it is not all surprising 
that the one-dimensional TSAW with g # 0, however small, belongs to a different 
universality class from the RW, as argued by Pietronero (1983): the existence of a 
physical mechanism, no matter how weak, which prevents the walk from having equal 
step probabilities will eventually be dominant on larger scales. This view is consistent 
with the ‘blob’ picture of de Gennes (1979). 

On the other hand, things are not so clear in the SRC limit, at least as regards the 
physical mechanism underlying the crossover between TSAWS and SRCS. In what follows, 
we formulate the problem in terms of a grand canonical ensemble and present a 
real-space renormalisation-group (RSRG) scheme within which the SRC limit is dis- 
cussed. A physical picture is presented for the SRC limit, which gives results consistent 
with those obtained from scaling. It is to be noted also that in this limit Pietronero’s 
effective-medium approach fails, as pointed out by that author (Pietronero 1983); in 
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this sense our approach is complementary to his, whereas we raise some questions of 
our own as well. 

In order to formulate the problem in terms of a grand canonical ensemble, we first 
associate a fugacitiy K to  each step of the walk (Shapiro 1978, de Gennes 1979). 
We denote a generic walk by a, 1 0 1  being the number of steps and r, its end-to-end 
(scalar) distance. With x = e-g, the probability P(a ,  x )  of a walk a can be deduced 
from equation (2), with the following normalisation condition: 

P ( a , x ) = l  
a,Iu I = N  

(3)  

for a fixed N. In the grand canonical ensemble, each walk a will be assigned a weight 
w(a, x)K'" ' ,  with w(a, x )  proportional to P(a,  x ) .  Since for x = O  the only walks with 
non-zero probability are those with maximal end-to-end distance (ra = tal) which we 
denote by a,,,, a sensible choice is w ( a m a x ,  x )  = 1 for all x ,  and w(a, x )  = 
P(a ,  x ) / P ( a , , , ,  x )  for a # a,,, and IaI = lamax1, and all x. As the number of steps 
grows large, we expect 

w(a, x )  -NY-'K,(x)-" 
a./n ~ = N 

(4) 

in analogy with the SRC problem (McKenzie 1976, de Gennes 1979). Here, y is the 
suceptibility exponent, which equals one in I D  for both x = 0 (SRC) and x = 1 (RW); 
the connective constant K ,  equals 1 for x = O  and 4 for x = 1. Actually, since the 
weights in our problem are written in terms of probabilities satisfying normalisation 
condition (3),  it follows that K,(x)  = (1 + x) - '  and y = 1 for all x. In what follows, we 
shall concentrate on the average end-to-end distance 

which is expected to diverge as ( K , ( x ) - K ) - "  for K + K , ( x ) - ,  the exponent v being 
the same as that discussed by Pietronero (1983). 

A RSRG transformation with a scaling factor b should consist of a regular mapping 
( K ,  x )  + ( K ' ,  x'), such that [ ( K ' ,  x ' )  = b - ' ( ( K ,  x). From the analysis of the fixed points 
on the critical line K ,  = K , ( x )  (which should be invariant under the transformation) 
and their stability, one should obtain the possible values of v. We have not been able 
to obtain a set of transformation equations for general ( K ,  x ) ;  however we have 
succeeded in treating the x - 0  region in a way consistent with what is known for 
K , ( x ) .  This already allows us to gain considerable physical insight into the crossover 
between TSAW and SRC in ID. 

First we note that at x = 0 no path reversal is allowed, hence x' = x = 0. For K '  
we just apply the standard connectivity ideas used in RSRG to  obtain K '  = K b  for a 
b-bond cell, so ( K * ,  x * )  = (1 ,O)  is a fixed point at which v =In b/ln A = 1 for all b. 
These are the exact results for the SRC in I D  (McKenzie 1976). 

Near x = 0, besides the maximal end-to-end distance walks, one must take into 
account walks that turn back. A reversal of an a,,, path implies a weight reduction 
from 1 to order x ;  the simplest modifications of an a,,, path are shown in figure 1. 
For both ( a )  and ( b ) ,  up to order x ,  the weight w is just x/2; the factor $ is necessary 
because, after the backward step at A, the walk has the same probability of proceeding 
to the right ( a )  or to the left ( 6 )  when leaving B (see equation (2)). 
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Figure 1. ( a )  and ( 6 )  Two paths with the same probability to order x (see text) 

Of course, other reversals can occur further along the way; however, at x - 0 we 
expect that the overall density of backward steps will be low enough so they can be 
treated independently. For example, one  can easily check from figure l ( b )  that if the 
walk turns back to  the right again, its weight will be x 2 / 4 ,  provided that the second 
reversal occurs far enough from A. 

W e  thus expect that a ‘low density of return steps’ appfoximation correctly applies 
to the calculation of the transformation in the neighbourhood of x = 0. To first order 
in x ,  we count in the transformation of K (for rescaling b e  2), the three paths in figure 
2 ( a ) ,  where we make use of the ‘centre rule’ of Napiork6wski (1983). 

This leads to  

K’ = K ~ +  X ~ 4 + ~ ( X 2 ) .  (6) 
This transformation takes into account the fact that, for a b = 2  cell, there a re  only 
two ways of inserting a modification of the type shown in figure l ( a ) .  Under coarse 
graining these modifications a re  just smoothed out,  and contribute to the  effective K’ .  

In order t o  determine x ’  to first order, we must look for the paths which, at  the 
site level, contribute to  what would be a reversal as the one shown in figure 1 ( b ) ,  at 
the cell level. We easily realise that these a re  the configurations shown in figure 2(  b )  
for b = 2. This means that 

( 7 )  i x ‘  = i x + 4 K 2 x  + O(x2). 

Figure 2. (a )  Configurations that are counted for the K rescaling. ( 6 )  Configurations that 
are counted for the x rescaling. Here b = 2. The renormalised lattice is built up by black 
sites only. 

For a general scaling factor b, equations ( 6 )  and (7) can be easily generalised as 

from which it follows that near the SRC fixed point ( K *  = 1 ,  x* = 0 ) ,  x ’  = bx, i.e. x is 
a relevant parameter. Further, since the Jacobian of the transformation is triangular 
at  the SRC fixed point, the eigenvalues a re  both equal to 6, as can be seen from ( s i .  
Hence, the crossover exponent is 

(9)  4 = ( I n  Ak)/(ln A,) = 1 .  
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This is consistent with a straight critical line near x = 0, as implied by K J x )  = (1 + x)-', 
referred to above. In order to gain further physical insight into this result, we recall 
that at x - 0 the average number of steps betwen two reversals is of order x-'; this 
implies the existence of a diverging characteristic length: N - x-', for x approaching 
zero. On the other hand, at the SRC limit x = 0 the correlation length diverges as 

&,a SK-". (10) 

with S K = K , - K ,  K,=1,  v,=1. 
We can see then that the physical mechanism underlying the crossover between 

TSAW and SRC is the competition between these two diverging lengths. From standard 
scaling arguments it follows that near the SRC limit the correlation length must behave 
as 

Alternatively, the crossover may be viewed in terms of the (relevant) variables x 
and 6 K :  

& =  5 , F ( x 4 / W  (12) 

where 4 is the crossover exponent. 
Comparing (1 1) and (12), 

f ( N / & )  = F ( N - + / 5 ; ' )  =&N4/5,) (13) 
so + = l .  

Thus we have a physical explanation of the renormalisation-group result obtained 
above, which is related to the fact that at x - 0  the TSAW is similar to a RW with 
(average) step length N. 

The fact that + > 0, that is, x is a relevant variable, has important consequences 
when combined with standard views about the behaviour near x = 1: at the g = 0, RW 
limit, it is well known that the existence of a physical mechanism that disturbs the 
isotropic step probability distribution drives one away from the pure RW behaviour 
(actually a qualitative, effective-medium-like discussion shows that it must happen also 
for the TSAW case with x - 1, so nothing surprising is expected in this limit). We are 
then left with a renormalisation-group flow that is unstable both at the RW and the 
SRC limits: this can only be consistent with a third non-trivial fixed point on the critical 
frontier in the ( K ,  x)  plane, with x, Z 0, 1 which must be stable along the critical line, 
as shown schematically in figure 3. This then implies that the exponent for the TSAW 
in I D  is the same for any finite, non-zero value of the repulsion parameter g, and 
different from both that of the RW and that of the SRC. This conclusion has been very 

Figure 3. Schematic picture of inferred fixed points and flow. 
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recently confirmed by the Monte Carlo simulations of Bernasconi and Pietronero 
(1983). 

The precise location of the new intermediate fixed point would be interesting. 
Further work is in progress along this line. 

SLAdQ thanks CNPq for financial support; ALS acknowledges the Accademia dei 
Lincei and the Royal Society for partial support. 
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